How to... Compute limits of rational sequences

Given: A sequence with rational elements, i.e. a sequence of the form

$$
a_{n}=\frac{\alpha_{p} n^{p}+\alpha_{p-1} n^{p-1}+\cdots+\alpha_{2} n^{2}+\alpha_{1} n+\alpha_{0}}{\beta_{q} n^{q}+\beta_{q-1} n^{q-1}+\cdots+\beta_{2} n^{2}+\beta_{1} n+\beta_{0}}
$$

where $p, q \in \mathbb{N}$ are some numbers (the highest exponents in the numerator and the denominator, respectively) and $\alpha_{1}, \ldots, \alpha_{p}$ and $\beta_{1}, \ldots, \beta_{q}$ are some real coefficients.

Wanted: The limit

$$
a:=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\alpha_{p} n^{p}+\alpha_{p-1} n^{p-1}+\cdots+\alpha_{2} n^{2}+\alpha_{1} n+\alpha_{0}}{\beta_{q} n^{q}+\beta_{q-1} n^{q-1}+\cdots+\beta_{2} n^{2}+\beta_{1} n+\beta_{0}}
$$

Example

Consider the following sequences.

$$
\begin{aligned}
& a_{n}:=\frac{4 n^{3}+3 n^{2}-2 n+42}{6 n^{3}-2 n^{2}+n} \\
& b_{n}:=\frac{2 n^{2}+n}{n^{4}+n^{3}-2 n^{2}-1} \\
& c_{n}:=\frac{n^{2}-n-5}{n+1}
\end{aligned}
$$

1 Find the highest exponent

Determine the highest exponent $r:=\max \{p, q\}$ in both numerator and denominator of the sequence.

For a_{n}, the highest exponent is $r=3$ (in both numerator and denominator we have a n^{3}-term).
For b_{n}, the highest exponent is $r=4$ (there is a n^{4} term in the denominator).
For c_{n}, the highest exponent is $r=3$ (there is a n^{2} term in the numerator).

2 Factor out the highest-exponent-term
Factor out the term \mathfrak{n}^{r} (i.e. the \mathfrak{n} term with the highest exponent) in both numerator and denominator. Then cancel the n^{r} term.

Factoring out $n^{3} / n^{4} / n^{2}$ in the sequences $a_{n} / b_{n} / c_{n}$ yields

$$
\begin{aligned}
& a_{n}=\frac{n^{3} \cdot\left(4+\frac{3}{n}-\frac{2}{n^{2}}+\frac{42}{n^{3}}\right)}{n^{3} \cdot\left(6-\frac{2}{n}+\frac{1}{n^{2}}\right)}=\frac{4+\frac{3}{n}-\frac{2}{n^{2}}+\frac{42}{n^{3}}}{6-\frac{2}{n}+\frac{1}{n^{2}}} \\
& b_{n}=\frac{n^{4} \cdot\left(\frac{2}{n^{2}}+\frac{1}{n^{3}}\right)}{n^{4} \cdot\left(1+\frac{1}{n}-\frac{2}{n^{2}}-\frac{1}{n^{4}}\right)}=\frac{\frac{2}{n^{2}}+\frac{1}{n^{3}}}{1+\frac{1}{n}-\frac{2}{n^{2}}-\frac{1}{n^{4}}} \\
& c_{n}=\frac{n^{2} \cdot\left(1-\frac{1}{n}-\frac{5}{n}\right)}{n^{2} \cdot\left(\frac{1}{n}+\frac{1}{n}\right)}=\frac{1-\frac{1}{n}-\frac{5}{n}}{\frac{1}{n}+\frac{1}{n^{2}}}
\end{aligned}
$$

3 Use the rules for limits

Use the following rules for limits

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}+b_{n} & =\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
\lim _{n \rightarrow \infty} c \cdot a_{n} & =c \cdot \lim _{n \rightarrow \infty} a_{n} \\
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} & =\frac{1}{\lim _{n \rightarrow \infty} a_{n}} \\
\lim _{n \rightarrow \infty} \frac{1}{n^{k}} & =0 \quad \text { for any } k>0
\end{aligned}
$$

to compute the limit of numerator and denominator separately.
If the denominator converges to zero, while the numerator converges to a real, non-zero number, the whole sequence is divergent.

We can compute the limits of a_{n} and b_{n} easily, as the denominator converges to a non-zero number in both cases:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\frac{\lim _{n \rightarrow \infty} 4+\frac{3}{n}-\frac{2}{n^{2}}+\frac{42}{n^{3}}}{\lim _{n \rightarrow \infty} 6-\frac{2}{n}+\frac{1}{n^{2}}}=\frac{4+0+0+0}{6-0+0}=\frac{2}{3} \\
& \lim _{n \rightarrow \infty} b_{n}=\frac{\lim _{n \rightarrow \infty} \frac{2}{n^{2}}+\frac{1}{n^{3}}}{\lim _{n \rightarrow \infty} 1+\frac{1}{n}-\frac{2}{n^{2}}-\frac{1}{n^{4}}}=\frac{0+0}{1+0-0-0}=0
\end{aligned}
$$

For the limit of the sequence c_{n}, we observe that the numerator of c_{n} converges to $\lim _{n \rightarrow \infty} 1-\frac{1}{n}-\frac{5}{n}=1$ while the denominator of c_{n} converges to zero ($\lim _{n \rightarrow \infty} \frac{1}{n}+$ $\frac{1}{n^{2}}=0$). Thus, the whole sequence diverges (in this case to $+\infty$). So

$$
\lim _{n \rightarrow \infty} c_{n}=+\infty
$$

